Glycol
ethers, with the combination of ether, alcohol and hydrocarbon
chain in one molecule, provide versatile solvency characteristics
with both polar and non-polar properties. The chemical
structure of long hydrocarbon chain resist to solubility
in water, while ether or alcohol groups introduce
the promoted hydrophilic solubility performance. This
surfactant-like structure provides the compatibility
between water and a number of organic solvents, and
the ability to couple unlike phases. Glycol ethers are
characterized by their wide range of hydrophilic/hydrophobic
balances. glycol ethers are used as diluents and levelling agents in the manufacture of
paints and baking finishes. Glycol ether series are used in the manufacture
of nitrocellulose and combination lacquers. They are
used as an additive in brake fluid. They are formulated for dying textiles and leathers
and for insecticides and herbicides. They provides performance in cleaners
products with oil-water dispersions. They are used in printing industries as
they have a slow evaporation rate. They are used as a fixative for perfumes,
germicides, bactericides, insect repellents and antiseptic. They are used as an
additive for jet fuel to prevent ice buildup. Glymes, dimethyl ethers, have two
terminal methyl groups which offer stability and high solvency. They are useful
as solubilizers and phase transfer catalysts. Glymes offer the property required
as an inert reaction medium chemical reaction due to their low chemical
reactivity. They are suitable particularly for organometallic and polymerization
reactions. Glycol ethers which contain hydroxyl group
are also useful chemical intermediate. The hydroxyl
group will undergo reaction with aldehydes (or ketones)
to produce hemiacetals (or acetals), with epoxides to
produce polyether alcohols, with halogenating agents
to produce alkoxy alkyl halides, with carboxylic acid
compounds or inorganic acids to produce a number
of esters.
Acetate is the
ester that an organic group replaces a hydrogen atom in -OH group of acetic acid
through reaction (typically condensation) with alcohols. Condensation is the
reaction in which two molecules having -OH groups are joined with eliminating a
water molecule from their -OH groups. They are produced by esterification reaction from acetic acid and the corresponding alcohol in the presence of strong acids like sulfuric acid. This reaction is reversible and acetate
can be hydrolyzed back into
alcohol and acetic acid in the presence of strong bases or strong acid, especially at elevated temperature.
The term acetate is also for the salt that
one or more of the hydrogen atoms of acetic acid are replaced by one or more
cations of the base, resulting in a compound containing the negative organic ion
of CH3COO-. Lower
acetate is a non-polar to weak polar aprotic solvent which have some solubility
portion in water. Its miscibility with water gets higher at elevated temperature.
Higher acetates have a
low
solubility in water and used as extraction solvents for fine chemicals
particularly for certain antibiotics. Organic acetates are
good solvents for a broad range of resins as they are miscible with almost all
common organic liquids. Due to their powerful solvency, high volatility and mild
odor, acetates are widely used as solvents for paints, coatings, adhesives, cellulose, plastics, fats,
wood stains. Additionally ether acetates series are also widely used as solvents. This surfactant-like structure provides the compatibility between water and a
number of organic solvents, and the ability to couple unlike phases. The main
products include ethyleneglycol
monoethyl ether acetate, ethyleneglycol monobutyl ether acetate,
and propyleneglycol monomethyl ether acetate. |